
Scripting with Python

Schrödinger Suite 2006
Schrödinger Press

Scripting with Python

Copyright © 2006 Schrödinger, LLC. All rights reserved. CombiGlide,

Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Phase, Prime,

QikProp, QikFit, QikSim, QSite, SiteMap, and Strike are trademarks of

Schrödinger, LLC.

Schrödinger and MacroModel are registered trademarks of Schrödinger,

LLC.

The Visualization Toolkit (VTK) is a copyrighted work (1993-2002) of Ken

Martin, Will Schroeder, Bill Lorensen. All rights reserved.

Python is a copyrighted work of the Python Software Foundation. All

rights reserved.

The C and C++ libraries for parsing PDB records are a copyrighted work

(1989) of the Regents of the University of California. All rights reserved.

The NCSA HDF5 (Hierarchical Data Format 5) Software Library and

Utilities is a copyrighted work (1998-2004) of the Board of Trustees of

the University of Illinois. All rights reserved.

See the Copyright Notices for full copyright details.

To the maximum extent permitted by applicable law, this publication is

provided “as is” without warranty of any kind. This publication may

contain trademarks of other companies.

Please note that any third party programs (“Third Party Programs”) or

third party Web sites (“Linked Sites”) referred to in this document may

be subject to third party license agreements and fees. Schrödinger, LLC

and its affiliates have no responsibility or liability, directly or indirectly,

for the Third Party Programs or for the Linked Sites or for any damage or

loss alleged to be caused by or in connection with use of or reliance

thereon. Any warranties that we make regarding our own products and

services do not apply to the Third Party Programs or Linked Sites, or to

the interaction between, or interoperability of, our products and services

and the Third Party Programs. Referrals and links to Third Party

Programs and Linked Sites do not constitute an endorsement of such

Third Party Programs or Linked Sites.

Revision A, April 2006

Contents
Document Conventions .. vii

Chapter 1: Introduction ... 1

Chapter 2: About Python ... 3

2.1 What is Python? .. 3

2.2 Where Can I Find Out More About Python? ... 3

2.3 Some Useful Things to Know About the Python Language.............................. 4

2.4 Why Python? .. 5

2.5 Isn't It Too Slow? ... 7

Chapter 3: Running Python Within Maestro .. 9

3.1 Overview - What Can I Do With Python in Maestro? .. 9

3.2 A First Python Script in Maestro .. 9

3.3 Scripts, Modules, and Functions.. 10

3.4 The pythonrun Command .. 10

3.5 What To Do If It Doesn't Work ... 11

3.6 The pythonimport Command .. 12

3.7 Adding a Parameter .. 12

3.8 Module Search Path .. 13

3.9 The pythoneval Command... 13

Chapter 4: Issuing Maestro Commands ... 15

4.1 The maestro Python Module ... 15

4.2 Sending a Command to Maestro From a Python Script................................... 16

4.3 Other Ways to Use maestro.command() ... 17
Maestro 7.5 Scripting with Python iii

Contents

iv
Chapter 5: Manipulating the Workspace .. 21

5.1 The Structure Concept ... 21

5.2 Getting the Workspace Structure ... 21

5.3 Setting the Workspace Structure ... 21

5.4 Operations on Structures .. 22

5.4.1 Obtaining Information on Atoms ... 22

5.4.2 Obtaining Information on Bonds ... 23

5.4.3 Adding and Deleting Bonds .. 24

5.4.4 Measuring and Adjusting .. 24

5.4.5 Deleting Atoms.. 24

5.5 Things You Can Do with the Workspace Structure ... 25

Chapter 6: Scripting the Project Table ... 31

6.1 Getting Information About the Project Table.. 31

6.2 Selecting Entries in the Project Table ... 32

6.3 Working on Entries in the Project Table.. 35

6.4 Adding New Columns to the Project Table ... 36

Chapter 7: Running Jobs from Scripts... 39

7.1 The maestro.job_wait Function .. 39

7.2 Running and Managing Jobs Outside Maestro ... 40

7.2.1 Access to the Job Database ... 41

7.2.2 Information on Job Hosts .. 41

7.2.3 Running Jobs From Python... 42

Chapter 8: Writing Your Own Panels .. 43

8.1 Tkinter ... 43

8.2 Important Considerations.. 43

8.3 Supporting Atom Selection from the Workspace.. 44

8.4 Creating Panels with a Maestro Look and Feel ... 46
Maestro 7.5 Scripting with Python

Contents
Chapter 9: Registering Python Functions with Maestro 49

9.1 Periodic Functions .. 49

9.2 Mouse Hover Functions ... 50

Chapter 10: Debugging Your Scripts... 53

10.1 The Power of print ... 53

10.2 The pdb Module ... 53

Chapter 11: The Maestro Scripts Menu.. 55

11.1 The scripts.mnu File ... 55

11.2 Cascading Menus.. 55

11.3 Creating Scripts to be Installed in Maestro .. 56

Chapter 12: Tips and Traps ... 59

12.1 Things to Watch Out For .. 59

12.2 Things That Might be Useful ... 59

Chapter 13: Running Scripts Outside Maestro .. 61

13.1 Running Your Scripts ... 61

13.2 Simple Filters ... 61

Chapter 14: Getting Help .. 65

Appendix A: Reference Modules ... 67

Copyright Notices ... 69
Maestro 7.5 Scripting with Python v

Contents

vi
 Maestro 7.5 Scripting with Python

Document Conventions
In addition to the use of italics for names of documents, the font conventions that are used in
this document are summarized in the table below.

In descriptions of command syntax, the following UNIX conventions are used: braces { }

enclose a choice of required items, square brackets [] enclose optional items, and the bar
symbol | separates items in a list from which one item must be chosen. Lines of command
syntax that wrap should be interpreted as a single command.

In this document, to type text means to type the required text in the specified location, and to
enter text means to type the required text, then press the ENTER key.

References to literature sources are given in square brackets, like this: [10].

Font Example Use

Sans serif Project Table Names of GUI features, such as panels,
menus, menu items, buttons, and labels

Monospace $SCHRODINGER/maestro File names, directory names, commands,
environment variables, and screen output

Italic filename Text that the user must replace with a value

Sans serif
uppercase

CTRL+H Keyboard keys
Maestro 7.0 Scripting with Python vii

Document Conventions

viii
 Maestro 7.0 Scripting with Python

Maestro Scripting with Python
Chapter 1
Chapter 1: Introduction
Since the beginning, Maestro has had a command language. However, until now, scripting abil-
ities have been limited to simple lists of Maestro commands. Feedback from users has shown
us that many people need abilities well beyond that. For this reason Maestro 7.0 provides
improved scripting ability with the well-known scripting language Python. The combination of
Python, the Maestro command language, and Python functions for using Maestro functionality,
is very powerful and greatly expands the user's ability to automate and customize Maestro.

On top of the Maestro interface, the Python tools provided with Schrödinger’s software include
interfaces to the Job Control facility. With these interfaces, scripting capabilities can be
extended into automated workflows that combine Schrödinger’s products in ways that suit the
user’s needs.

Python is easy to use and fun to learn. It is a straightforward language that doesn’t require the
kind of learning curve normally associated with a programming language.

This document aims to provide a non-technical introduction to using Python within Maestro.
This tutorial provides lots of examples and includes a brief description of the most important
things you need to know about Python. While a detailed description of how to program in
Python is beyond the scope of this tutorial, that information is readily available elsewhere.
Maestro 7.5 Scripting with Python 1

Chapter 1: Introduction

2
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 2
Chapter 2: About Python
2.1 What is Python?

Python is a feature-rich scripting language that has gained broad acceptance in a wide range of
applications. Unlike programming languages such as C, C++ or Fortran (the languages used to
develop other Schrödinger software like Maestro itself) Python is what is known as an inter-
preted language. This means that it doesn't have to undergo an extensive compilation process
before it can be used. Developing scripts in Python is fast and easy. All the examples given in
this document are fairly short and deliberately avoid advanced language features. However, all
Python language features are available from within Maestro including the use of nearly all of
the hundreds of third party modules1 available for Python.

What makes Python so valuable for us is that it is both embeddable and extensible. We have
embedded Python in Maestro so that it can provide scripting facilities to control the program.
At the same time we have also extended Python by providing access to a whole range of
Maestro functionality for dealing with chemical structures, Maestro files, and projects.

2.2 Where Can I Find Out More About Python?

There are a number of excellent sources of information about Python, both online and print
materials. Here are a few:

• www.python.org1 contains documentation, examples and a great many interesting links.
Nearly everything you read about Python on this and related web sites will be relevant to
your use of Python in Maestro. Version 7.5 of Maestro uses Python 2.3.3 so many recent
Python language features are available from within Maestro.

• If you have some experience with scripting or programming but not with Python, Dive
into Python1 is filled with valuable, graduated examples that will help you master Python.

• If you are a more experienced user, Thinking in Python1 covers more advanced concepts
like applying design patterns to Python.

• O'Reilly1 has published a number of popular Python books.

• The Vaults of Parnassus1 contain many useful Python modules and examples.

1. Please see the notice regarding third party programs and third party Web sites on the copyright page at the front
of this manual.
Maestro 7.5 Scripting with Python 3

http://www.vex.net/parnassus/
http://www.python.org
http://diveintopython.org/
http://diveintopython.org/
http://www.mindview.net/Books/TIPython
http://python.oreilly.com/
http://www.vex.net/parnassus/

Chapter 2: About Python

4

2.3 Some Useful Things to Know About the Python
Language

This section is targeted at those who do not have the time to fully master Python but still want
to write (or modify existing) scripts. It focuses on the basic core of Python, just the bare essen-
tials with which to get started.

Indentation matters in Python. Unlike other scripting and programming languages which use
{} to group statements together, statements in Python are grouped simply by the level to which
they are indented relative to one another. This means you need to take care in order to ensure
the indentation reflects the logic you intend. Consider the following two examples:

Example 1:
x=5
y=4
if x > 5 :

x = x-1
x=y+1
print x

This example prints 5 because the line x=y+1 is not part of the if block.

Example 2:
x=5
y=4
if x > 5 :

x = x-1
x = y+1

print x

This second example prints 5, since the lines x=x-1 and x=y+1 are executed if and only if x is
indeed greater than 5. All Python scripts use indentation to indicate grouping of statements,
and it is usually considered good form to place each Python statement on its own line.

Note: You can use either space characters or tabs for indents, but you should not mix them.
We recommend using spaces.

Number sign (#) is used for comments. Comments begin with a # and extend to the end of the
current line. The Python interpreter ignores comments.

The keyword def is used to define functions. Function parameters may have default values.
Functions (groups of Python statements called to perform a particular task) are defined using
the def statement:
Maestro 7.5 Scripting with Python

Chapter 2: About Python
Example 3
def myfunc(x, y=10):

x = x + y
print x

myfunc(5)
myfunc(5, 5)

Here we have defined a function called myfunc(). It takes two arguments, x and y where y
has a default value of 10. This means you can call myfunc in two ways as shown in this
example. In the first call to myfunc() a value for x is supplied, but no value for y. This means
the default value for y is used. As a result myfunc computes the sum of 5 and 10 and prints the
result which is 15. In the second use, values are supplied for both x and y. By providing an
explicit value for y, the default value is overridden and the result is the sum of 5 and 5 which is
10.

Variables do not need to be explicitly typed or destroyed. In the above examples, the types
(integer, string, real number) of the variables x and y are defined only by the context and do not
need to be declared before the variable is used. Also, unlike other languages such as C and
C++, there is no need to allocate or free memory in Python—this is handled automatically.

All Python script files should have .py suffix. Without this suffix, Maestro does not recognize
the files as Python scripts.

2.4 Why Python?

Python is not the only embeddable and extensible scripting language available. Ruby, Tcl and
Perl are all other possibilities. Perl is probably the most serious other contender. In many cases
a preference for a given language is a personal matter, that depends on the user's experience
and personal style. However, given that it is technically possible to use Perl in the same way we
use Python, and that in terms of language features essentially the same sorts of things are
possible with either, there were three reasons we chose Python instead of Perl:

1. While Perl is used widely for system administration and web programming, Python is
more popular in scientific programming and larger scale development. Python is very
scalable: it can be used to write simple scripts or to develop full-fledged applications.

2. Of the Maestro users surveyed, most expressed either a strong preference for Python over
Perl, or no preference at all.

3. Python has a clean, straightforward syntax; a benefit for new or occasional users. Con-
sider the following two fragments, which perform the same task:
Maestro 7.5 Scripting with Python 5

Chapter 2: About Python

6

Example 1. Perl sample

use mmlibs;
use mmlibsext;
use mae;
sub spin {

 # The three input parameters are assigned passed values or the default.
my $axis = shift || 'Y';
my $step = shift || 10;
my $slp = shift || 0.1;
my $total_rotate=0;

 # If the axis is not X,Y or Z then we can die with an error string
 # which will be posted as a Maestro error dialog.

if($axis !~ m/^X|^Y|^Z/i) {
die "$axis is not a valid axis value - must use X,Y or Z";

 }

 # Now we begin the code which actually does the rotation. Start with
 # a loop that finishes when we've rotated 360 degrees:

while($total_rotate < 360.0) {
 # Issue a rotate command. Note that the variables $axis and $step
 # will be replaced with their values before Maestro gets to see
 # the command.
 mae_command("rotate $axis=$step");
 # Redraw the window
 mae_main_window_redraw();
 # Increment the total rotation by the step increment:
 $total_rotate += $step;
 # The following line is not obvious but it appears to be the best
 # (only?) way to pause for a given time from a Perl script.

select undef, undef, undef, $slp
 }

return;
Maestro 7.5 Scripting with Python

Chapter 2: About Python
Example 2. Python sample

from schrodinger import maestro
from schrodinger import mm
import time
def spin(axis="Y",step=10,slp=0.1):
 total_rotate=0

 # Verify the axis:
if axis != "X" and axis != "Y" and axis != "Z" :

raise "MyException", "Can't use axis: " + axis

 # Now we begin the code which actually does the rotation. Start with
 # a loop that finishes when we've rotated 360 degrees:

while(total_rotate < 360.0) :
 # Issue a rotate command. Note that the %s and %d
 # will be replaced with their values before Maestro gets to see
 # the command.
 maestro.command("rotate %s=%d" % (axis,step))
 # Redraw the window
 maestro.redraw()
 # Increment the total rotation by the step increment:
 total_rotate += step
 time.sleep(slp)

return

In language comparisons like this, there really is no "right" answer. However, while you may
find some aspects of Python a little odd at first, we urge you to persist. Python is easy to learn
and easy to use.

There are a number of accounts available of programmers who have made the switch from Perl
to Python. One of the best is the Why Python?2 essay, by well-known programmer and author
Eric S. Raymond.

2.5 Isn't It Too Slow?

One of the limitations of an interpreted language like Python is that because each line needs to
be parsed and “understood” (interpreted) at the time the script is run, it tends to be slow in
comparison to compiled languages like C, which are translated into a low-level machine
description.

2. Please see the notice regarding third party programs and third party Web sites on the copyright page at the front
of this manual.
Maestro 7.5 Scripting with Python 7

http://www.linuxjournal.com/article.php?sid=3882

Chapter 2: About Python

8

However, one important point about the way we use Python, both in Maestro and outside of it,
is that much of the heavyweight computation and manipulation of chemical structures is not
actually done in Python. As you will see from the examples in this document, Python in
Maestro is primarily used for controlling the program. The real work is actually done by
Maestro itself. The time and overhead required to interpret a Python script is generally insig-
nificant relative to the work done by Maestro to execute the commands sent to it from a Python
script.
Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 3
Chapter 3: Running Python Within Maestro
3.1 Overview - What Can I Do With Python in Maestro?

There are two main ways that Python scripts can interact with Maestro: issue Maestro
commands and manipulate Workspace structures and Project Table entries. It is important to
realize that, although Python is the scripting language for Maestro in v7.0, there is no change
to the command language. The syntax of Maestro commands remains the same. However, what
has changed is the ability to issue Maestro commands from Python, a feature that greatly
increases the utility of these commands. Python scripts can contain control structures (if,
while, for, etc.), variables and parameters (values supplied by the user when the script is run),
so now it is possible to write scripts that are considerably more flexible and general than the
simple lists of Maestro commands previously available.

While issuing commands with Python scripts is an extremely powerful mechanism for control-
ling Maestro, it is essentially a one-way communication. There is no way for the scripts to
receive information about Maestro, the structure in the Workspace or entries in the Project
Table. Therefore we have introduced an additional mechanism so Python scripts can directly
manipulate structures and entries, right down to the level of changing the properties of indi-
vidual atoms. In practice many Python scripts use a combination of these two approaches.

3.2 A First Python Script in Maestro

This tutorial starts with a simple script that illustrates the basic mechanism for creating and
running scripts within Maestro.

You can create your Python scripts with any text editor. Some editors, like Emacs, include
special capabilities for Python such as colorizing keywords, comments, and strings; and main-
taining the correct indentation. Another possibility is the standard Python editor idle, which is
available at $SCHRODINGER/utilities/idle.

Example 1. myfirst.py

In your editor, create the following script and name the file myfirst.py:

myfirst.py
def myfirst():

print "Hello World from Maestro"
Maestro 7.5 Scripting with Python 9

Chapter 3: Running Python Within Maestro

10
Take care to indent the second line. It indicates that print "Hello World from Maestro"
is part of the myfirst() function. Save your script and start Maestro from the directory in
which you saved your script.

3.3 Scripts, Modules, and Functions

Before we actually run the script in Maestro, it is worth discussing the terminology
surrounding Python scripts. While we will continue to use the term script in fairly loose terms,
technically what you just created is a Python module. Modules are named after the files that
contain them. Since you named your file myfirst.py, the module is called myfirst.

Modules generally contain a number of functions. In this example, our module contains a
single function, also named myfirst(). There is, however, no reason why a function needs to
be named after the module: it can have any name you wish.

It is important to understand the distinction between functions and modules. When you ask
Maestro to run a script it is actually executing a single function inside a module; it does not, in
general, run the entire contents of the module. While not recommended, you can in fact place
all the functions you write into a single file.

A common practice is to place a set of related functions into a module. Some may not be
designed to be directly called from Maestro. You might, for example, call one function from
Maestro and that function in turn might call other functions in the same module.

We have provided a number of useful functions that you can use as starting points to create
your own. You will see more on this in the next chapter.

3.4 The pythonrun Command

Now it is time to run your script. You saved your script as myfirst.py and started Maestro
from the directory that contains the script. Now, enter the following from the Maestro
command line:

pythonrun myfirst.myfirst

You should see:

Hello World from Maestro

displayed in the terminal window from which you started Maestro. Congratulations! You just
wrote and executed your first Python script from Maestro.

Note: We specified both the module and function as part of the pythonrun command.
Maestro 7.5 Scripting with Python

Chapter 3: Running Python Within Maestro
In this example, we had direct access to our script by starting Maestro from the directory
containing the script, but this can quickly become restrictive. See Section 3.8 on page 13 for
details on where to store modules.

3.5 What To Do If It Doesn't Work

If the script did not run as you expected, there are a few things you can try. The error message
in Figure 3.1 means that Maestro was not able to locate the myfirst module. Check the
following:

• The file is saved and named myfirst.py
• The file exists in the directory from which Maestro was started
• You correctly typed the command as pythonrun myfirst.myfirst

If you see an error message like Figure 3.2 you probably introduced a syntax error into the
script. For example, this message indicates the indentation was not correct. The second line of
the function must be indented relative to the first so that Python knows print belongs to the
myfirst function.

Figure 3.1. Import Error.

Figure 3.2. Indentation Error.
Maestro 7.5 Scripting with Python 11

Chapter 3: Running Python Within Maestro

12
3.6 The pythonimport Command

While pythonrun is the most commonly used Maestro command associated with Python
scripting, if you are making frequent changes to a python script you will also find
pythonimport useful. One of the side effects of using pythonrun is that a copy of the
module containing the requested script is actually loaded into memory. This allows Maestro to
be more efficient in handling repeated requests for the same script. But if you now make
changes to the myfirst.py file while Maestro is running and once again enter:

pythonrun myfirst.myfirst

you do not see the effects of your changes. Maestro is still using the original myfirst script
from the previously loaded myfirst.py file. This is where the pythonimport command
comes into play. When you run:

pythonimport myfirst

it causes Maestro to reload the myfirst.py file so that the next time you execute the script
using pythonrun, the updated version is used.

3.7 Adding a Parameter

A small change to myfirst.py illustrates how to pass information to a Python script in
Maestro.

Example 2. myfirst.py

myfirst.py
def myfirst(param = ""):

print "Hello World from Maestro " + param

Save your changes and then use pythonimport to reload myfirst.py. Now run the script:

pythonrun myfirst.myfirst

It displays the same output as the first version of myfirst.py: “Hello World from Maestro”.
This is because we added an empty string as the default parameter. If you do not supply a value
for param, the script supplies an empty string. If we had not added the default value (param =
""), then running myfirst without a value for the parameter results in an error.

Now run the script with a parameter:

pythonrun myfirst.myfirst "a second time"

You should see:

Hello World from Maestro a second time
Maestro 7.5 Scripting with Python

Chapter 3: Running Python Within Maestro
This is a very significant feature of running Python from within Maestro. Unlike older Maestro
command scripts, where everything needed to be hard-coded into the script, Python functions
can take any number of parameters, some or all of which can have default values. This allows
Python scripts to be very general. For example, you can write a script that operates on a file-
name supplied by the user at the time the script is run.

Note: With the exception of quoted strings (""), which are treated as a single parameter, all
parameters entered from the Maestro command line input area must be separated by
white space.

3.8 Module Search Path

This section describes how Maestro locates the module file. In our example we made sure that
Maestro was started from the directory containing myfirst.py. This is typical for developing
scripts. However, it is not very convenient when you want to use your script in many different
directories. To make this easier, we created a special directory for your scripts:

your home dir/.schrodinger/maestroversion/scripts

where version is the 2-digit Maestro version number. Inside this directory you can place files
like myfirst.py. Then you can issue commands like:

pythonrun myfirst.myfirst

from any directory in which you run Maestro.

Note: Maestro looks first in the current directory (the one from which you started Maestro)
first before looking in $HOME/.schrodinger/maestroversion/scripts. So if you
have a local copy of the script, the local copy is used instead.

3.9 The pythoneval Command

There is a third Python-related Maestro command, pythoneval. This command is used less
frequently than the commands already discussed, but it is described here for completeness.

Pythoneval allows you to execute any Python expression in the Maestro Python interpreter.
This means you have interactive access to the interpreter.

You can achieve the same result as pythonrun but you must remember to first import the
module and use the Python style syntax to call any functions. So using the example for
myfirst.py as described above:

pythoneval import myfirst
pythoneval myfirst.myfirst("a second time")
Maestro 7.5 Scripting with Python 13

Chapter 3: Running Python Within Maestro

14
is equivalent to:

pythonrun myfirst.myfirst "a second time"

Now you know the basics of creating Python scripts and running them from within Maestro.
The next chapter describes how to create a Python script that actually interacts with Maestro.
Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 4
Chapter 4: Issuing Maestro Commands
The previous chapter showed how to run a very simple Python script from within Maestro and
introduced modules and functions. This chapter discusses how you can write scripts to issue
Maestro commands.

4.1 The maestro Python Module

In order to communicate with Maestro you need to first import the provided maestro module
into your script. You'll see that most of the example scripts in the remainder of this document
contain a line which looks something like:

from schrodinger import maestro

near the top. This tells Python to load and make available the functions contained in the
maestro module.

There are several variants of this. In our examples we use the from schrodinger import
maestro form. This means that in the example scripts we will always reference the functions
in this module in the fully qualified form as maestro.function(). However, if you look at
Python documentation or other scripts, you will see that there are other ways you can use the
import command. For example:

from schrodinger.maestro import *

This means that everything in the maestro module can be used directly in your script without
the maestro. prefix.

You can even go further and use an import expression such as:

from schrodinger.maestro import command as c

This means that instead of using maestro.command() you can simply use c().

Note: You can write your own modules and import them into other modules. The only
requirement is that your modules are in the module search path as described in the
previous chapter.
Maestro 7.5 Scripting with Python 15

Chapter 4: Issuing Maestro Commands

16
4.2 Sending a Command to Maestro From a Python
Script

Example 1. roty.py

1. Create a file called roty.py that contains the following:

roty.py
from schrodinger import maestro

def roty(by=90):
 maestro.command("rotate y=%d" % by)

2. In Maestro, place a structure in the Workspace.

3. In the command input area, enter the following command:

pythonrun roty.roty

You should see the contents of the Workspace rotate by (the default value of) 90 degrees
about the Y axis.

4. You can rotate by any amount by supplying your own value for the parameter. For
instance:

pythonrun roty.roty 30

rotates the contents of the Workspace by 30 degrees.

There are a couple of notable things about this script:

• We use maestro.command() to tell Maestro to issue a command. The command is just
a normal Maestro command (and can include any aliases you may have defined for the
command). The hundreds of available commands and their options are documented in the
Maestro Command Reference Manual.

Note: You can review the commands that have been issued in the normal operation of
Maestro by choosing Command Script Editor from the Edit menu.

• The maestro.command() function takes a single string parameter. However we can
substitute the value of variables into that string before issuing the command. This is what
the

"rotate y=%d" % by

expression does. The value of by is substituted into the string before the command is
issued. This is an extremely powerful mechanism and we provide more examples later in
this document.
Maestro 7.5 Scripting with Python

Chapter 4: Issuing Maestro Commands
There are a couple of enhancements we can make to this script. In the previous example the
axis of rotation is hard coded into the Python function. We could create similar functions called
rotx() and rotz() to rotate around the other axes. Another option is to supply the axis of
rotation as a parameter and add that into the command string before issuing the command.
Here is the reworked example in which we have not only parameterized the axis of rotation but
also taken care to verify that the supplied argument is a valid axis:

rot.py
from schrodinger import maestro

def rot(axis="y", by=90):

if(axis != "y" and axis != "x" and axis != "z"):
raise Exception, "%s is not a valid axis" % axis

 maestro.command("rotate %s=%d" % (axis,by))

Now you can issue a Maestro command such as:

pythonrun rot.rot x 30

to get a rotation of 30 degrees around the X-axis.

Note: While this might be a good example of building your own function that uses parame-
ters, you will probably want to use the built-in rotate command to rotate structures in
the Workspace:

rotate x=30

4.3 Other Ways to Use maestro.command()

There are two other ways in which maestro.command() can be used. First, instead of
providing a single string, it is possible to specify the keyword, operands, and options of the
Maestro command separately. For example, to rotate around the x, y, and z axis use the
following:

maestro.command("rotate", x=5)
maestro.command("rotate", y=5)
maestro.command("rotate", z=5)

In this way the keyword rotate is a separate parameter to the options: x=5, etc.

It is also possible to issue more than one command in a single call to maestro.command() by
using a triple quoted string with each command on a separate line. For example, the commands
above can also be issued as:
Maestro 7.5 Scripting with Python 17

Chapter 4: Issuing Maestro Commands

18
maestro.command("""
rotate x=5
rotate y=5
rotate z=5
""")

This is a useful way to issue a series of Maestro commands taken directly from the Maestro
command script editor. Note that each command must be on a new line.

Example 2. spin.py

Before we finish this introduction we will look at a more sophisticated example—a Python
function that does something not currently possible with a Maestro command. The following
example uses the form of maestro.command() where the options are specified separately
from the keyword:

#spin.py
from schrodinger import maestro
import time
def spin(axis="Y",step=10,slp=0.1):
 total_rotate=0

Verify the axis:
if axis != "X" and axis != "Y" and axis != "Z" :

raise "MyException", "Can't use axis: " + axis

while(total_rotate < 360.0) :
Issue a rotate command.
if axis == "X":

 maestro.command("rotate", x=step)
elif axis == "Y":

 maestro.command("rotate", y=step)
elif axis == "Z" :

 maestro.command("rotate", z=step)
Redraw the window

 maestro.redraw()
Increment the total rotation by the step increment:

 total_rotate += step
 time.sleep(slp)

return

When this is run as:

pythonrun spin.spin y 20 0.2
Maestro 7.5 Scripting with Python

Chapter 4: Issuing Maestro Commands
it spins the structure in the Workspace around the Y axis 360 degrees in increments of 20
degrees. The axis, increment, and the delay are all specified as parameters.

There are a couple of useful points to make about this script:

• In addition to including the maestro module we also include the standard Python mod-
ule time. This allows us access to the time.sleep() function, used in this script to
introduce a short delay after each rotation.

• Note how the total_rotate variable is used in the while loop. You can use any com-
bination of parameters and variables in combination with the functions in the maestro
module.

• In this particular function we need to use maestro.redraw() to force the contents of
the Workspace to be redrawn after each rotation.

If you want to experiment with issuing commands from your own scripts, this example is a
good place to start. As an exercise, create a script that rotates the structure first one way and
then another.

It is also possible to use Maestro's command alias function to create new commands. For
example, if you issue:

alias spin pythonrun spin

then you can just use spin like any other command.

In general, if a task can be performed by issuing a Maestro command, that is the preferred way
to achieve it from a Python script. Not only does this generally result in the shortest possible
script, but Maestro commands also automatically update the internal state of Maestro,
redrawing the Workspace as needed, etc.

As powerful as these techniques are, there are still things you cannot achieve using Maestro
commands alone. The following chapters describe how to control Maestro at a lower level of
detail.
Maestro 7.5 Scripting with Python 19

Chapter 4: Issuing Maestro Commands

20
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 5
Chapter 5: Manipulating the Workspace
Previous chapters covered how to run Python scripts in the Maestro environment and how to
issue commands from those scripts. In this chapter we discuss more sophisticated and powerful
features that allow you to directly manipulate the structure in the Workspace.

5.1 The Structure Concept

The chapters that follow refer to the concept of a structure. In Maestro, a structure is a collec-
tion of atoms. The contents of the Workspace are considered a structure, as are individual
entries in the Project Table. Maestro stores information about structures: information about the
atoms, bonds, and their properties. Python can get structures and manipulate them using this
stored information. To do this, Python uses the functions in the structure.py module, which
you can import into your script with the following command:

from schrodinger import structure

Once you get a structure, you can manipulate it in many ways, including deleting all the atoms.

5.2 Getting the Workspace Structure

As long as your script is running you can get the structure which corresponds to the contents of
the Workspace. This structure is valid for as long as your script is running. However you
should take care to get the structure again if your script issues a Maestro command that
changes the contents of the Workspace, such as importing new structures or including new
entries. The safest approach is to treat the structure as valid only until the completion of the
next Maestro command.

To get the Workspace structure in a Python script, use a statement such as:

st = maestro.workspace_get()

Once you have a structure there are a number of operations you can perform on it.

5.3 Setting the Workspace Structure

Once you change the structure, you can pass it back to Maestro for display. To do this, use:

maestro.workspace_set()
Maestro 7.5 Scripting with Python 21

Chapter 5: Manipulating the Workspace

22
Then you can use:

maestro.redraw_request()

to request that Maestro redraw the contents of the Workspace when your script has finished
executing. You can also use maestro.redraw() to redraw the contents of the Workspace
before your script has finished executing.

5.4 Operations on Structures

The following summarizes many of the operations possible with a structure object.

5.4.1 Obtaining Information on Atoms

You can obtain information on atoms through the atom property of a structure. It is possible to
index individual atoms (indices start from 1) or to iterate over atoms. So the following two
statements are equivalent:

for iatom in st.atom:
 print iatom.x

for iatom in range(1,len(st.atom)+1):
 print st.atom[iatom].x

Here x is the x-coordinate for the atom, but any of the properties shown in Table 5.1 and
Table 5.2 can be used.

Table 5.1. Atom properties for access or modification.

Property Description

pdbname PDB atom name

pdbres PDB residue name

resnum PDB residue number and insertion code (returned as tuple)

chain PDB chain name

temperature_factor The PDB temperature factor

atomic_number The atomic number

x The x-coordinate

y The y-coordinate

z The z-coordinate
Maestro 7.5 Scripting with Python

Chapter 5: Manipulating the Workspace
5.4.2 Obtaining Information on Bonds

Once you have an atom, you can obtain information on the bonds associated with that atom by
using the bond property. So for example:

total_order=0
for iatom in st.atom:
 for ibond in iatom.bond:
 total_order += ibond.order

This example uses the bond order property. The available bond properties are listed in
Table 5.3.

atom_type MacroModel atom type

color Integer index representing color in Maestro color palette

atom_name Maestro atom name (used for Jaguar mostly)

partial_charge The partial atomic charge

solvation_charge The solvation atomic charge

formal_charge The formal charge

secondary_structure The secondary structure assignment

atom_style The molecular representation of the atom (wire, CPK etc.)

visible The displayed/undisplayed flag

Table 5.2. Atom properties for access only - cannot be modified.

Property Description

entry_name The entry name

molecule_number The number of the molecule to which this atom belongs

number_by_molecule The atom number by molecule

number_by_entry The atom number by entry

Table 5.1. Atom properties for access or modification.

Property Description
Maestro 7.5 Scripting with Python 23

Chapter 5: Manipulating the Workspace

24
5.4.3 Adding and Deleting Bonds

This can be done via the structure class:

st.addBond(12, 17, 2)

adds (or sets if it already exists) a double bond between atoms 12 and 17.

st.deleteBond(12, 17)

deletes the bond between atom 12 and 17.

There is also the areBound() method which returns True if the two atoms specified have a
bond between them.

5.4.4 Measuring and Adjusting

To measure, you can use the measure() method of the structure class:

st = maestro.workspace_get()
print st.measure(1, 2) # Distance between atoms 1 and 2
print st.measure(1, 2, 3) # Bond angle between 1, 2, and 3
print st.measure(1, 2, 3, 4) # Torsion angle between 1, 2, 3, and 4

Adjust works in a similar manner:

st.adjust(2.5, 1, 3) # Set distance between atoms 1 and 2 to 2.5 Angs
st.adjust(110, 1, 2, 3) # Set bond angle between atoms 1, 2, and 3 to 110 degrees
st.adjust(180.0, 1, 2, 3, 4)
Set the torsion angle between atoms 1, 2, 3, and 4 to 180.0 degrees.

5.4.5 Deleting Atoms

This is done with the deleteAtoms() method. For example:

to_del = [1,2,5]
st.deleteAtoms(to_del)

Table 5.3. Bond properties for access or modification.

Property Description

order Bond order

atom1 The first atom of the bond

atom2 The second atom of the bond

style The molecular representation of the bond (wire, tube)
Maestro 7.5 Scripting with Python

Chapter 5: Manipulating the Workspace
5.5 Things You Can Do with the Workspace Structure

There are many things you can do with a structure once you retrieve it. We can not cover all of
them here. For more information, see the Structure Module reference document in:

$SCHRODINGER/general/docs/py30_tutorial/schrodinger.structure.html

What follows are a couple of examples.

Example 1. closecontact.py

This example illustrates how to issue Maestro commands and manipulate the Maestro Work-
space structure. We use a Python function to highlight close contacts between any atoms sepa-
rated by more than three bonds:

#closecontact.py
from schrodinger import maestro
from schrodinger import structure
from schrodinger import structureutil

def close_contacts(thresh=2.0) :
Get the current on-screen structure and calculate the number of atoms:

 st = maestro.workspace_get()
 distance = 0

Loop over all the atoms
for iatom in st.atom :

Calculate a list of all the atoms which are not within three bonds
of the current "iatom". This is done by evaluating an ASL expression
"not(withinbonds 3 atom. iatom)"

 not_neighbours = structureutil.evaluate_asl(st,
"not(withinbonds 3 atom. %d)" %

 int(iatom))

for jatom in not_neighbours :
Calculate the iatom-jatom distance

 distance = st.measure(iatom, jatom)
if(distance < thresh) :

This distance is less than the threshold - generate
a maestro command:
maestro.command("distance %d %d"% (int(iatom), int(jatom)))

By now you recognize the import maestro statement. This example also imports two addi-
tional modules, structure and structureutil, that we provide to perform operations at a
lower level.

The first task in close_contacts() is to get the structure from the Workspace. Next we loop
over all atoms in the structure.
Maestro 7.5 Scripting with Python 25

Chapter 5: Manipulating the Workspace

26
For each atom in the Workspace, we only want to calculate the distance away from the current
atom if it is more than three bonds away. An easy way to calculate this is with an ASL expres-
sion: not(withinbonds 3 atom.iatom).

Evaluating this returns a Python list containing the atoms that satisfy our expression. We use
that list in an inner loop to calculate the distance from the current atom. If a distance is less
than the given threshold, we use Maestro to mark the distance by issuing the distance
command.

This script contains common tasks: looping over all atoms, evaluating ASL expressions, and
making measurements on the structure. Note that since we did not make any changes to the
structure directly, we did not need to call maestro.workspace_set().

Example 2. rotH.py

The following script adds hydrogens to the structure in the Workspace, and attempts to rotate
the O-H and S-H groups on SER, THR, TYR, and CYS residues to place the hydrogen as close
as possible to an acceptor. This is also an example of using multiple functions in a Python
module. Only one of the functions is intended to be called from Maestro. The other simply
improves the readability of the script.

Note: This script is provided purely as an example of how to manipulate the workspace—it is
not intended to be a solution to the difficult problem of orienting hydrogens in
proteins!

#rotH.py
#Import the modules we need:
from schrodinger import maestro
from schrodinger import structure
from schrodinger import structureutil

def rotH(radius = 4.0):
 """ This is the function which is to be called from Maestro. It takes
 a single parameter which is for each H-X how far from X we should
 look for acceptors (the default is 4.0) """

Start by getting the workspace structure
 st = maestro.workspace_get()

Add hydrogens to the structure. We could do this by using a Maestro
command but this shows how we can also do it without using Maestro. After
we add hydrogens we can then get the number of atoms:

 structureutil.add_hydrogens(st)
 num_atoms = len(st.atom)
Maestro 7.5 Scripting with Python

Chapter 5: Manipulating the Workspace
Now locate all the rotatable atoms in all the CYS, SER, TYR and THR.
The simplest way to do this is using an ASL expression:

 rotables = structureutil.evaluate_asl(st,
"(res.ptype SER, THR, TYR, CYS) and (atom.ptype HG, HG1, HH)")

Create a couple of empty lists to hold the numbers of the hydrogen
atoms which have nearby acceptors and the nearest acceptor for each one:

 h_list = []
 acc_list = []

rotables is now a list of the appropriate atoms. We can loop over that
and do what we need to do with them:
for h in rotables:

We need to locate a suitable dihedral angle to rotate:
 dihedral = get_dihedral_atoms(st, h)

if not len(dihedral) == 4 :
Under normal circumstances there shouldn't be any situations
where we can't locate four atoms. However, there is the chance
that we might get an incomplete residue in a PDB file, so we'll
just ignore this residue if that's the case:
continue

We can use another ASL expression to locate all the possible
acceptors within a reasonable distance of the heavy atom which
the hydrogen is attached to:

 acc_types = "OD1, OE1, OD1, SG, SD, ND1, NE2, OH, O"
 asl = "(within %f atom.num %d) and atom.ptype %s" % (radius,
 dihedral[1],
 acc_types)

Note that we exclude the backbone and the residue we are in:
 asl = \

"(%s) and (sidechain or res. HOH) and not fillres(atom.num %d)" \
 % (asl, dihedral[1])
 acceptors = structureutil.evaluate_asl(st, asl)

 ang = 0.0
 min_dist = 1000.0
 best_ang = 0.0

If it actually found some suitable acceptors, we can
then scan the C-C-O-H dihedral see which dihedral gives the
closest contact to an acceptor. The scan is done in increments
of 5 degrees:
while len(acceptors) > 0 and ang < 360.0 :

Set to the current angle:
Note that we pass the dihedral
as C2-C1-X-H as specifying it in this way indicates
Maestro 7.5 Scripting with Python 27

Chapter 5: Manipulating the Workspace

28
we want to rotate the hydrogen:
 st.adjust(ang, dihedral[3], dihedral[2],
 dihedral[1], dihedral[0])

For each acceptor atom measure the distance and find out
whether we've actually found a closer match than we've found
before:
for acc in acceptors:

 dist = st.measure(h, acc)
if dist < min_dist:

 min_dist = dist
 best_ang = ang
 best_acc = acc

increment the angle by 5 degrees:
 ang += 5.0

We've tried all the angles now. Reset it back to the one
which gave us the closest contact with an acceptor:
if len(acceptors) > 0:

 st.adjust(best_ang, dihedral[3], dihedral[2],
 dihedral[1], dihedral[0])

Keep a list of the atoms associated with the best
interaction. For convenience we keep a string representation
of the atom number as we know now that we will later
transform this into an ASL expression:

 h_list.append("%d" % h)
 acc_list.append("%d" % best_acc)

Finally we tell Maestro that we want this structure to be used back
in the workspace:

 maestro.workspace_set(st)

Put up some hydrogen bond markers to highlight if we
have picked up any H-bonds
if(len(h_list) > 0):

 h_asl = ", ".join(h_list)
 acc_asl = ", ".join(acc_list)
 maestro.command("hbondset1 atom.num %s , %s " % (h_asl, acc_asl))

return
Maestro 7.5 Scripting with Python

Chapter 5: Manipulating the Workspace
##
def get_dihedral_atoms(st, h):

""" For atom number h in the structure st, find four atoms to
 be used to scan the C-C-X-H dihedral. These are returned as a list.
 This function illustrates how to traverse the bonds of a structure """

 ret_list = []

The fist atom will be H itself:
 ret_list.append(h)

Now find the O or S attached to the H. Note that bonds (like everything
associated with structures) are indexed from "1" so we are
looking for the first bond:

 Xatom = st.atom[h].bond[1].atom2
 ret_list.append(int(Xatom))

Now find a suitable non-H atom bonded to the X:
 C1atom = -1

for b in st.atom[Xatom].bond:
 conn_atom = b.atom2

This is probably the easiest way to find a non-H atom:
if not conn_atom.atomic_number == 1 :

 C1atom = int(conn_atom)
 ret_list.append(C1atom)

Leave the loop:
break

Check to see that we did find a C1 atom:
if C1atom < 0 :

return ret_list

Now look for the final atom we need:
for b in st.atom[C1atom].bond:

 conn_atom = b.atom2
This is probably the easiest way to find a non-H atom:
if not conn_atom.atomic_number == 1 :

 C2atom = int(conn_atom)
 ret_list.append(C2atom)

Leave the loop:
break

return ret_list
Maestro 7.5 Scripting with Python 29

Chapter 5: Manipulating the Workspace

30
Now that we have seen how to manipulate the structure from the Workspace, next we will look
at how to access the Project Table directly.
Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 6
Chapter 6: Scripting the Project Table
While using Python scripts to manipulate the structure in the Workspace is useful for extending
the functionality of Maestro, you can also automate Maestro by operating on structures in the
Project Table. This chapter provides an overview of the possibilities.

6.1 Getting Information About the Project Table

Sometimes the easiest way to operate on the Project Table is to bring each structure into the
Workspace in turn and operate on it there by issuing Maestro commands. You can do this with
the maestro.project_table_get() function and looping over all the items in the table.
By default such looping only returns the selected entries.

Example 1. saveimage.py

Here is an example that saves a .jpg image for each selected entry:

#saveimage.py

from schrodinger import maestro
from schrodinger import project

def save_image():

 pt = maestro.project_table_get()

for sel_entry in pt:
 ename = pt[sel_entry]['s_m_entry_name']
 maestro.command("entrywsincludeonly entry \"%s\"" % ename)
 maestro.command("saveimage format=jpeg jpeg_quality=75 %s.jpg" %
 ename)

Note: The entry name needs to be surrounded with quotes in the entrywsincludeonly
command. This ensures that entry names that contain spaces are treated as one name.

If your project synchronization preferences are set to Automatic, each time you initiate an
entrywsincludeonly on one entry in the Workspace, all entries in the project are updated.
(To set these preferences, choose Preferences from the Maestro menu, then select the Project
folder.) You can use this to make a change to all the selected entries.
Maestro 7.5 Scripting with Python 31

Chapter 6: Scripting the Project Table

32
Example 2. meth.py

The following script methylates amides in every selected structure by combining Maestro
commands with direct manipulation of the Workspace structure for each selected entry:

#methylate.py

from schrodinger import maestro
from schrodinger import structureutil
from schrodinger import project

def methylate():

 pt = maestro.project_table_get()
maestro.command("fragment organic Methyl")

for sel_entry in pt:
 ename = pt[sel_entry]['s_m_entry_name']
 maestro.command("entrywsincludeonly entry", ename)
 ct = maestro.main_ct_get()
 amides = structureutil.evaluate_smarts(ct, "[H]NC(=O)")

for amide in amides:
 maestro.command("attach %d" % amide[0])

You can use practically any combination of Maestro commands and direct manipulations in the
Workspace structure to achieve the results you want. We have also provided a similar function,
project.getPropertyNames() that returns the property names.

6.2 Selecting Entries in the Project Table

Maestro has built-in support for selecting entries with entryselectonly and similar
commands. This support is provided in three ways:

• Entry Selection dialog box
• ability to define filters
• use of ESL (see below)

There are limits to what type of selections can be generated with these features. They all rely
on Maestro's Entry Selection Language (ESL). The ESL was designed to work on the proper-
ties associated with entries. For example:

entryselectonly property1 < 4

selects only the entries where property1 has a value less than 4. However, since calculations
are not possible in ESL, the following command would not work:
Maestro 7.5 Scripting with Python

Chapter 6: Scripting the Project Table
entryselectonly (2 * property1) < 4

While it is possible to create expressions of arbitrary complexity with the ESL, it is not
possible to make selections in Maestro based on calculations performed on the actual structure
(number of atoms etc.) nor to make selections based on functions of the entry properties such
as the difference between two properties.

If your Python script needs to make selections in the Project Table that are not possible by
issuing a entryselectonly command, the preferred method is a selection filter and the
project.selectRows() function. To do this, write a simple Python function that is called
for every entry in the project. If your function returns True the entry is selected, if it returns
False the entry is not selected. Your function should accept two parameters: the CT corre-
sponding to the current entry and a Python dictionary with an entry for each property in the
Project Table. Note that it’s also possible to use project.selectRows() with a list of row
numbers to be selected. The following example demonstrates both these approaches:

Example 3. selring.py

This example selects entries that contain rings of a specified size:

#select_ring.py

from schrodinger import maestro
from schrodinger import structureutil
from schrodinger import project

def select_ring(ring_size):

 pt = maestro.project_table_get()
 matches = []

 # Loop over all the entries in the project
for row in xrange(1,len(pt)+1):

 rings = structureutil.find_rings(pt[row].structure)
for ring in rings:

if(len(ring) == ring_size):
 matches.append(row)

 # Replacing them all through one call is quicker
 # than calling this method over and over
 pt.selectRows(project.REPLACE, rows=matches)

The following two functions show how to select using a callback function
def select_ring2(ring_size):

 pt = maestro.project_table_get()
 pt.selectRows(project.REPLACE, ring_size, function=myfunc)
Maestro 7.5 Scripting with Python 33

Chapter 6: Scripting the Project Table

34
def myfunc(project, ct, property_dict, *args):

"""
 Example callback function to select based on a property
 Return True if it should be selected
 Return False if it should be deselected
 """

for ring in rings:
if(len(ring) == ring_size):

return True
return False

If you call this function from Maestro as:

pythonrun select_ring.select_ring 4

only those entries in the project with four-membered rings are selected.

Example 4. selprop.py

This example selects entries from the project based on a combination of the entry's structure
and properties:. In this case we use the property dictionary to find the value of the property we
are interested in.

#selprop.py

from schrodinger import maestro
from schrodinger import structureutil
from schrodinger import project

def select_proerty(ring_size):

 pt = maestro.project_table_get()
 matches = []

 # Loop over all the entries in the project
for row in xrange(1,len(pt)+1):

 num_atoms = pt[row].structure.atom_total
if(num_atoms < 40 and pt[row]['#stars'] != None and

 pt[row]['#stars'] > 4):
 matches.append(row)

 # Replacing them all through one call is quicker
 # than calling this method over and over. So pass in the list
 # we built.
 pt.selectRows(project.REPLACE, rows=matches)
Maestro 7.5 Scripting with Python

Chapter 6: Scripting the Project Table
6.3 Working on Entries in the Project Table

As shown above, the maestro.project_select_entry_get() function can be used to
bring each entry into the Workspace sequentially and operate on it there. While this is a useful
technique, there may be times when this is not required, or where it would be inefficient to
bring all entries into the Workspace. An alternative is to loop over all entries in the project
table and operate on their structures directly.

Example 5. color_by_energy_gradient.py

Here is an example that sets the color of each entry, based on the relative molecular mechanics
energy

Note: Because we return True from the function, the entry structure will be updated in the
Project Table

#color_by_energy_gradient.py

from schrodinger import maestro
from schrodinger import structureutil
from schrodinger import project

def color_relative():

 """
 Use the property Realtive_Potential_Energy-OPLS-2005 to color all entries
 in the project by the property. Leaves entries without this property
 alone.
 """

 pt = maestro.project_table_get()

for row in xrange(1, len(pt)+1):

 # Check to see we actually have the property for this
 # entry - if not, go to the next one.
 rel_energy = pt[row]['r_mmod_Relative_Potential_Energy-OPLS-2005']

if rel_energy == None:
print "Skipping entry %s since it has no value" % \

 pt[row]['s_m_entry_name']
continue

else:
 # Color values are defined in $SCHRODINGER/maestro-vXX/data/colors.res

 col = 16 # red
if rel_energy < 4.0:

 col = 4 # blue
elif rel_energy < 8.0:

 col = 10 # green
Maestro 7.5 Scripting with Python 35

Chapter 6: Scripting the Project Table

36
elif rel_energy < 12.0:
 col = 14 # orange

 num_atoms = pt[row].structure.atom_total
 ct = pt[row].structure

for i in range(1, num_atoms+1):
 ct.atom[i].color = col

6.4 Adding New Columns to the Project Table

The previous example showed how you can loop over each entry in the project table and
modify the structure. It is also possible to add new properties to the Project Table. To do this,
simply add a new value to the property dictionary and make sure your function returns True.

Example 6. count_ch.py

The following example adds properties for the number of hydrogens and carbons to every entry
in the project.

#count_ch.py

from schrodinger import maestro
from schrodinger import project

def count_ch():

 pt = maestro.project_table_get()
 matches = []

for row in xrange(1, len(pt)+1):

 ct = pt[row].structure

 num_h_atoms = 0
for a in ct.atom:

if a.atomic_number == 1:
 num_h_atoms += 1

 num_c_atoms = 0
for a in ct.atom:

if a.atomic_number == 6:
 num_c_atoms += 1

 # Add or overwrite if already present
 # Format for name is: <type>_<author>_<property_name>
 # type can be i (integer), r (real), b (boolean), s (string)
 # author is "m" for maestro, "user" for user, etc.
 # property_name is any text. Underscores are allowed.
Maestro 7.5 Scripting with Python

Chapter 6: Scripting the Project Table
 pt[row]['i_user_Num_Carbons'] = num_c_atoms
 pt[row]['i_user_Num_Hydrogens'] = num_h_atoms

 pt.refreshTable()

Example 7. supersel.py

This is another example of looping over all entries. In this case an operation (superposition) is
performed on the entries and the RMS deviation is added as a property in the Project Table.

#supersel.py
from schrodinger import maestro
from schrodinger import structureutil
from schrodinger import project

def superimpose_select():

 pt = maestro.project_table_get()
 matches = []

 # Ensure superposition can be done
if pt.getSelectedRowTotal() < 2:

return

 count = 1
for sel_entry in pt:

if count == 1:
 # First selected entry is the reference
 ref_entry = pt[sel_entry].structure
 num_atoms_ref = ref_entry.atom_total
 pt[sel_entry]['r_user_MyRMS'] = 0.0

else:
 # For all others - superimpose non-hydrogen atoms
 ct = pt[sel_entry].structure
 num_atoms = pt[sel_entry].structure.atom_total

if not num_atoms == num_atoms_ref :
raise Exception, \

"There must be the same number of atoms in each structure"
 super_list = structureutil.evaluate_asl(ct, "not atom.ele H")
 rms = structureutil.superimpose(ref_entry, super_list,
 ct, super_list)
 pt[sel_entry]['r_user_MyRMS'] = rms

 count = count + 1

 # Update the project table so users can see the added or
 # updated property column
 pt.refreshTable()
Maestro 7.5 Scripting with Python 37

Chapter 6: Scripting the Project Table

38
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 7
Chapter 7: Running Jobs from Scripts
We have yet to provide an example of running a job from a Python script. It is in fact quite
easy, either inside or outside Maestro. The script needs to simply issue the appropriate Maestro
commands coupled with the maestro.job_wait function.

7.1 The maestro.job_wait Function

One limitation of Maestro command scripts (which are essentially just lists of Maestro
commands) is that it is not possible to write a script that runs a job and waits for it to finish.
This is easily overcome with a Python script and the maestro.job_wait() function. This
example uses glob.glob to process all PDB files in the current working directory. However,
it could have just as easily processed all the entries in a project as we saw earlier:

Example 1. allfiles.py

allfiles.py
from schrodinger import maestro
from schrodinger import structureutil
import commands
import glob
import os

This is the one that should be executed from Maestro. It uses the
glob.glob subroutine to apply the action to all PDB files:
def mini_all_pdb() :

first clean up by removing any existing files:
 commands.getoutput("rm *-min.pdb")
 directory=os.getcwd()
 path = os.path.join(directory,"*.pdb")
 filelist = glob.glob(path)

for afile in filelist:
 mini_pdb(afile)

The function called for every PDB file:
def mini_pdb(file) :

import os
#Convert the filename into a PDB code:

 (path, fname) = os.path.split(file)
 (pdb_code, suffix) = os.path.splitext(fname)
Maestro 7.5 Scripting with Python 39

Chapter 7: Running Jobs from Scripts

40
 #Import the PDB file:
 maestro.command("entryimport format=pdb %s" % file)
 # Delete all molecules < 100 atoms and add hydrogens:
 maestro.command("""
 delete atom mol.atom < 100
 hydrogenapply all
 """)

 # Set up the MacroModel job, in vacuo, OPLSA2001, constrained CAs,
 # and 100 iterations of LBFGS
 maestro.command("""
 potential field=oplsaa
 potential cutoff=normal
 constrainedset atom.ptype " CA "
 energytask mini
 minienergy method=lbfgs maxiter=100
 jobsettings mmod incorporate=replaceentries jobname=%s
 """ % pdb_code)

 maestro.redraw()
Run and wait for the job:

 maestro.command("energystart")
 maestro.job_wait(True)

 maestro.command("jobcleanup files=jobandmonitor %s "% pdb_code)

 maestro.redraw()
 #The job is now finished - export the structure to a new PDB file
 out_file = pdb_code + "-min.pdb"
 maestro.command("entryexport format=pdb source=selected %s" % out_file)

Delete the entry from the project
 maestro.command("entrydelete")

7.2 Running and Managing Jobs Outside Maestro

The current release of the Python modules adds some powerful tools for running and managing
jobs outside Maestro. The schrodinger.job.jobcontrol module provides access to some
of Schrödinger’s job control functionality. It allows read access to the job database and the job
host list, and can help with launching subjobs.
Maestro 7.5 Scripting with Python

Chapter 7: Running Jobs from Scripts
7.2.1 Access to the Job Database

Read-only access to the job database is provided by the schrodinger.job.jobcontrol
class. A Job object can be created with a job ID string. These strings look like isabel-0-
434ac660 and are printed to the output of all Schrödinger jobs.

Once a Job object is created, the available keys can be listed with the keys() method and
their values can be obtained as attributes of the object. The database values retrieved at creation
time will never be updated automatically. They must be explicitly updated with the
readAgain method.

This example from the interactive prompt demonstrates how to read the database, access
attributes, and update your information:

>>> import schrodinger.job.jobcontrol as jobcontrol
>>> j = jobcontrol.Job("isabel-0-434ac660")
>>> j.keys()
[’BackendFifo’, ’BackendPid’, ’ChildPid’, ’Command’, ’Dir’, ’Envs’,
’Home’, ’Host’, ’HostEntry’, ’HostsFile’, ’InputFiles’, ’JobDB’,
’JobDir’, ’JobFifo’, ’JobHost’, ’JobId’, ’JobPid’, ’JobPort’,
’JobUser’, ’LaunchTime’, ’LogFiles’, ’MonitorInterval’, ’Name’,
’OutputFiles’, ’Processors’, ’Program’, ’StartTime’, ’Status’,
’StatusTime’, ’SubJobs’, ’User’]
>>> j.LaunchTime
’2005-10-10-15:52:00’
>>> j.LogFiles
[’counterpoise.1146.blog’]
>>> j.StatusTime
’2005-10-10-17:18:31’
>>> import time; time.sleep(1200) # wait a while
>>> j.StatusTime
’2005-10-10-17:18:31’
>>> j.readAgain()

7.2.2 Information on Job Hosts

A single function is provided to return a list of Host objects representing the information from
the appropriate schrodinger.hosts file. The Host class provides attributes for processors,
temporary storage (tmpdir), SCHRODINGER locations, and some less commonly needed
pieces of information. (See the module documentation for more information.)

This example function lists all hosts with multiple processors:

def list_multiprocessor_hosts():
import schrodinger.job.jobcontrol as jobcontrol
for host in jobcontrol.get_hosts():

if host.processors > 1:
print "%20s: %d" % (host.name, host.processors)
Maestro 7.5 Scripting with Python 41

Chapter 7: Running Jobs from Scripts

42
7.2.3 Running Jobs From Python

The jobcontrol.launch_job function provides a way to run a Schrödinger job from a
Python script. The single argument to this function is a Schrödinger command that you would
issue from the command line (with the exception that $SCHRODINGER need not be included).
This launch_job function returns a Job object.

This interactive example shows how to start a Jaguar job, do some other calculations, then wait
for the Jaguar job to finish.

>>> import schrodinger.job.jobcontrol as jobcontrol
>>> job = jobcontrol.launch_job("jaguar run water.in")
>>> job.Status
’running’
>>> import time; time.sleep(10) # pretend this is useful
>>> job.wait()
>>> job.Status
’completed’
>>> job.OutputFiles
[’water.01.in’, ’water.out’]
Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 8
Chapter 8: Writing Your Own Panels
All the scripts we have used so far have been run from the Maestro command line using the
pythonrun command. It is, however, possible to write scripts that display their own graphical
panels, similar to those of Maestro itself.

8.1 Tkinter

We support the Tkinter graphical user interface (GUI) toolkit for Python. It is simple to use and
comes as a standard part of Python. This document describes how to use Tkinter with Maestro.
Learning to program a GUI takes a bit of practice, but Tkinter and PMW make it relatively
easy. For information on using Tkinter, see the recommended O’Reilly books on Python3 or
the following page on the Pythonware website3 which offers a step-by-step tutorial. For infor-
mation on PMW, see http://pmw.sourceforge.net3. You can also find more examples using
Maestro and Tkinter at:

$SCHRODINGER/python-vversion/scripts/maestro/

8.2 Important Considerations

When a Tkinter program is running within Maestro both programs need to share event infor-
mation. Events in this context include mouse movements, mouse clicks, and key presses. Both
Maestro and the Python/Tkinter script respond to events. In order for a Tkinter script running
inside of Maestro to be able to share events with Maestro, special techniques are required.

First and foremost, never call mainloop() on any widget in your Tkinter script. If you do,
your script will run, but Maestro will be inactive while your Tkinter widget is visible. This
probably is not what you want since the real power of creating your own GUI panels is to allow
them to interact with Maestro.

Instead of using mainloop() use maestro.tk_toplevel_add() to notify Maestro when
you've built your panel and are ready to have it displayed. Maestro will then share the events it
receives with your panel and the two can interact. When you are finished with your panel and
want to dismiss it, call maestro.tk_toplevel_remove() to notify Maestro that you no
longer need to share events.

3. Please see the notice regarding third party programs and third party Web sites on the copyright page at the front
of this manual.
Maestro 7.5 Scripting with Python 43

http://python.oreilly.com/
http://www.pythonware.com/library/tkinter/introduction/
http://pmw.sourceforge.net

Chapter 8: Writing Your Own Panels

44
Note: Any number of Python/Tkinter scripts can be sharing events with Maestro.

Example 1. simple.py

Here is an example that displays a simple panel in Maestro:

simple.py
from schrodinger import maestro
from Tkinter import *

simple_top = 0

def simple_quit_com(*ignore):
 global simple_top
 maestro.tk_toplevel_remove(simple_top)
 simple_top.destroy()
 simple_top = 0

def simple():
 global simple_top

Don't put the panel up twice:
if(simple_top != 0):

return

 simple_top = Tk()
 quit_button = Button(simple_top, text='Quit', command = simple_quit_com)
 quit_button.pack()

 maestro.tk_toplevel_add(simple_top)

We use maestro.tk_toplevel_add to let Maestro know when we are ready to display the
panel and maestro.tk_toplevel_remove when we are finished with it. Also notice the use
of simple_top as a check to see if the panel is currently displayed. Before putting up a panel,
it is generally good practice to see if the panel already exists. It can be confusing to have
multiple instances of the same panel floating around.

8.3 Supporting Atom Selection from the Workspace

One of the most interesting things you can do with your panels is to receive information about
which atoms are selected in the Workspace while your panel is active.

Note: If you request to receive selection information from Maestro, then no other panel
within Maestro (or any other Python/Tkinter script) can receive selection information.
By the same measure, if another panel starts receiving selection information (say it is
Maestro 7.5 Scripting with Python

Chapter 8: Writing Your Own Panels
opened from the main Maestro menu) then your panel loses the ability to receive selec-
tion information. This is a natural consequence of the way atom selection operates in
the Maestro Workspace; picking information can only go to one place.

Example 2. simple_pick.py

Getting selections from the Maestro Workspace is simple. All you need to do is tell Maestro
the name of the Python function you want called when a selection is received. Here we have
extended the previous example by adding an additional function to receive atom selections.
Remember to tell Maestro you no longer want to receive events when the panel is closed.

simple_pick.py
from schrodinger import maestro
from Tkinter import *
from schrodinger import structure

simple_top = 0

def simple_quit_com(*ignore):
 global simple_top
 maestro.tk_toplevel_remove(simple_top)
 maestro.picking_stop()
 simple_top.destroy()
 simple_top = 0

def simple_pick_cb(at):
 st = maestro.workspace_get()
 pdb_res = st.atom[at].pdbres

print "Picked residue is: %s " % pdb_res

def simple_pick():
 global simple_top

Don't put the panel up twice:
if(simple_top != 0):

return

 simple_top = Tk()
 quit_button = Button(simple_top, text='Quit', command = simple_quit_com)
 quit_button.pack()

 maestro.picking_atom_start("Pick atom to have residue type printed",
 "simple_pick.simple_pick_cb")

 maestro.tk_toplevel_add(simple_top)
Maestro 7.5 Scripting with Python 45

Chapter 8: Writing Your Own Panels

46
It is important to note that the function passed to maestro.picking_atom_start() must
be fully qualified with the name of the function and the module, in this example,
simple_pick.simple_pick_cb().

The function that receives selections should be prepared to receive a single parameter, the atom
number of the selected atom in the Workspace. Once you have the atom number you can use
that to operate directly on the Workspace structure as shown in this example, or use it to issue
Maestro commands.

8.4 Creating Panels with a Maestro Look and Feel

The Schrödinger Suite 2006 release of the Python tools introduces some additional modules—
the schrodinger.ui package—that make it easier to create panels that better integrate with
Maestro. In their simplest form, these modules provide interfaces to the standard Tkinter and
PMW widgets, preconfigured to ensure that the appearance of the resulting panels closely
matches that of Maestro itself. We strongly encourage you to use this package to build panels
that interface to Maestro, because it avoids some of the problematic interactions between
certain PMW widgets and Maestro.

Example 3. simple.py

Here’s another version of Example 1, which uses the Schrödinger interface to Tkinter:

simple.py
from schrodinger import maestro
import schrodinger.ui.widget as stk

simple_top = 0

def simple_quit_com(*ignore):
global simple_top

 maestro.tk_toplevel_remove(simple_top)
 simple_top.destroy()
 simple_top = 0

def simple():
 global simple_top
 # Don’t put the panel up twice:

if(simple_top != 0):
return

 simple_top = stk.Tk()
 quit_button = stk.Button(simple_top, text=’Quit’,

command = simple_quit_com)
 quit_button.pack()
Maestro 7.5 Scripting with Python

Chapter 8: Writing Your Own Panels
 maestro.tk_toplevel_add(simple_top)

There are a number of other facilities that are provided by these modules - we suggest you look
at the reference documentation for more details.
Maestro 7.5 Scripting with Python 47

Chapter 8: Writing Your Own Panels

48
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 9
Chapter 9: Registering Python Functions with
Maestro
Normally, the Python functions you write for use in Maestro will be called explicitly via the
pythonrun command. However, there are some situations in which you may want to supply a
Python function that will be called when particular events occur during the normal operation of
Maestro. These functions, sometimes known as callbacks, are an important method for
extending and modifying the default behavior of Maestro. You have already seen one example
of a callback function at work in the previous chapter, where we used
maestro.picking_atom_start() to register a Python function that was called by Maestro
when an atom was selected in the Workspace. There are two additional callback functions that
can be used to extend the capabilities of Maestro.

9.1 Periodic Functions

If you need to perform an action periodically, you can use:

maestro.periodic_callback_add(your_callback_function_name)

to register a Python function that will be called approximately 20 times a second. If you would
like to perform the action at a lower frequency, maintain a counter in your function and only
perform the action once every N times your callback function is called (i.e. every 20 to get
about once a second).

Example 1. spin.py

Here is a simple example to show how this works:

#spin.py
Register a periodic callback to spin the molecule
from schrodinger import maestro
def start_spin():
 maestro.periodic_callback_add("spin.spin_cb");

Unregister the callback:
def stop_spin():
 maestro.periodic_callback_remove("spin.spin_cb");

The periodic callback:
def spin_cb():
 maestro.command("rotate y=5");
Maestro 7.5 Scripting with Python 49

Chapter 9: Registering Python Functions with Maestro

50
When you issue the pythonrun spin.start_spin command, the contents of the Work-
space will be rotated around the Y-axis. This will continue until you explicitly issue the
pythonrun spin.stop_spin command.

When you register a callback you should use the fully qualified module.function form. You
can register as many periodic callback functions as you like during a Maestro session. When
finished performing the periodic action, remember to unregister your callback function using:

maestro.periodic_callback_remove(your_callback_function_name)

Note: A registered callback function should not attempt to remove itself.

9.2 Mouse Hover Functions

You can also register a callback function, using:

maestro.hover_callback_add(your_callback_function_name)

that will be called by Maestro whenever the mouse is “hovering” (pointer is paused) over an
atom in the Workspace. In this example we will demonstrate the mouse hover callback by
utilizing the Maestro feature that allows atom-specific information to be displayed in the
Workspace status bar.

Example 2. hover.py

The following example replaces the default string in the status bar with the atom number and
partial charge of the atom the pointer is paused over:

#hover.py
from schrodinger import maestro
from schrodinger import structure
_last_atom = -1;

def set_hover():
 maestro.hover_callback_add("hover.hover_cb")

def clear_hover():
 maestro.hover_callback_remove("hover.hover_cb")

def hover_cb(at):
 global _last_atom

if(at == _last_atom):
return

if at > 0 :
 st = maestro.workspace_get()
 pcharge = st.atom[at].partial_charge
Maestro 7.5 Scripting with Python

Chapter 9: Registering Python Functions with Maestro
maestro.feedback_string_set("Atom: %d Charge = %5.3f" % (at, pcharge))

 _last_atom = at
return;

Note: Register the callback function using the full module.function form. When you no
longer need the mouse hover callback, unregister your function using:

maestro.hover_callback_remove(your_callback_function_name)
Maestro 7.5 Scripting with Python 51

Chapter 9: Registering Python Functions with Maestro

52
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 10
Chapter 10: Debugging Your Scripts
Even if you are an experienced script writer, you are going to occasionally make mistakes.
Now the task of debugging commences. This chapter discusses strategies for determining what
has gone wrong with your script.

10.1 The Power of print

One of the simplest and at the same time most valuable Python debugging tools is the print
statement. Since all the Python built-in types, including lists and dictionaries, can be printed,
judicious placement of temporary print statements can often provide enough information to
find even difficult errors. Note that the output resulting from a print statement appears in the
window from which you started Maestro.

10.2 The pdb Module

Powerful as it is, sometimes the print statement is not going to give you enough information
to find the problem. Fortunately, Python comes with a debugger (pdb) you can use even when
your script is running in Maestro. You can find a complete description of pdb at
www.python.org4.

Example 1. spin_debug.py

It is easy to use pdb with your scripts. Simply create a special version of your main function
that passes control to pdb, then call the modified function from Maestro. To illustrate, we are
going to extend one of our previous examples:

#spin_debug.py
import pdb

from schrodinger import maestro
import time

def spin(axis="y",step=10,slp=0.1):
 total_rotate=0

4. Please see the notice regarding third party programs and third party Web sites on the copyright page at the front
of this manual.
Maestro 7.5 Scripting with Python 53

http://www.python.org/doc/current/lib/module-pdb.html

Chapter 10: Debugging Your Scripts

54
if axis != "y" and axis != "x" and axis != "z" :
raise Exception, "Can't use axis: " + axis

while total_rotate < 360.0 :
 maestro.command("rotate %s=%d" % (axis,step))
 maestro.redraw()
 total_rotate += step
 time.sleep(slp)

return

def spin_debug(*args):
 pdb.run("spin.spin()")

Now, calling spin_debug from Maestro using pythonrun will run the script in the Python
debugger, giving you access to all its debugging tools. From the (Pdb) prompt at the main
window enter "b spin.spin" to set a breakpoint at the spin.spin() method. Next enter
"c" to continue execution up to the breakpoint.

(Pdb) import spin

(Pdb) b spin.spin

Breakpoint 1 at /home/user/.schrodinger/maestroversion/scripts/
spin.py:23

(Pdb) c

> /home/user/.schrodinger/maestroversion/scripts/spin.py(23)spin()

-> total_rotate=0

Once you are at the breakpoint, use "n" to step line by line through the function and "p" to print
current values of the variables. For a full list of available commands see the Python pdb
website5.

5. Please see the notice regarding third party programs and third party Web sites on the copyright page at the front
of this manual.
Maestro 7.5 Scripting with Python

http://www.python.org/doc/current/lib/module-pdb.html
http://www.python.org/doc/current/lib/module-pdb.html

Maestro Scripting with Python
Chapter 11
Chapter 11: The Maestro Scripts Menu
To this point, all our Python scripts have been run from the Maestro command line using
pythonrun. While this works well during development and for occasional use, it can be quite
cumbersome for frequently used, mature scripts. The Maestro Scripts menu offers a readily
accessible home for all your frequently used scripts.

You can add scripts to this menu directly in Maestro (see Chapter 13 of the Maestro User
Manual for details). Or you can add scripts to the Scripts menu manually by editing the
scripts.mnu file as described below.

11.1 The scripts.mnu File

The key to adding your scripts to the Maestro Scripts menu is to add a new entry for each script
to the scripts.mnu file. This file is located in the .schrodinger/maestroversion direc-
tory in your home directory. You can create this file if it does not already exist.

The format for the scripts.mnu file is simple. There is one entry for each menu item. Each
entry consists of two lines. The first describes the menu item itself. The second defines the
command that will be run when that menu item is selected. In the next example we make our
spin script available from the Scripts menu by creating a $HOME/.schrodinger/
maestroversion/scripts.mnu file containing the entry:

Spin
pythonrun spin.spin Y 30 0.1

The next time you start Maestro the Spin item will be available on the Scripts menu. Note how
we have supplied arguments to the spin.spin command. This mechanism is not limited to
running Python scripts. You can issue any Maestro command from the Scripts menu.
Depending on your personal preferences, this can be an effective alternative to pythonrun.

11.2 Cascading Menus

Since there is a practical limit to the number of items you can place on a single menu, you
probably will not want to add all your favorite scripts directly to the Scripts menu. By using
cascading submenus you can not only organize related scripts, but in the process keep the top
level Scripts menu more manageable. In this example we build a cascading submenu. We also
illustrate how several entries in a single submenu can initiate the same command, each
Maestro 7.5 Scripting with Python 55

Chapter 11: The Maestro Scripts Menu

56
supplying different arguments. To define a cascading submenu, place a colon (:) in the first
line of the entry:

Spin:X
pythonrun spin.spin X 10
Spin:Y
pythonrun spin.spin Y 10
Spin:Z
pythonrun spin.spin Z 10

Now we have a single Spin item in the top level Scripts menu. Spin contains a cascading
submenu with items X, Y, and Z. Each item causes the contents of the Workspace to rotate
about a different axis.

Note: You can only specify one level of cascading submenu items. You can not create an
entry like the following:

Category:subcategory:item

11.3 Creating Scripts to be Installed in Maestro

As mentioned earlier it is possible to use Maestro to install scripts into the Scripts menu. To do
this use the Manage... item in the Scripts menu. This works best when the script has been
configured with some additional information which can be displayed in the installation dialog
in Maestro. There are three things which are required to be added to the script to fully support
being able to install it via Maestro:

1. A module-level doc string. This looks like:

__doc__= """
A description of the script
Author
Date
"""

This doc string will be displayed as the description of the script when the user selects the
script in the Maestro script installation dialog box. It should be informative enough so
that the user knows exactly what the script does.

2. A comment that begins with #Name: For example:

#Name: Display all distances from an atom

This is the text that will be displayed in the Scripts menu when the script is installed. The
user has the option to edit this text at the point of installation but a useful default should
be supplied.
Maestro 7.5 Scripting with Python

Chapter 11: The Maestro Scripts Menu
3. A comment that begins with #Command:. For example:

#Command: pythonrun alldist.alldist

This is the command that will be used to run the script once is it installed in the Scripts menu.
Maestro 7.5 Scripting with Python 57

Chapter 11: The Maestro Scripts Menu

58
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 12
Chapter 12: Tips and Traps
12.1 Things to Watch Out For

This section is a collection of tips and techniques we have found useful. If you are having
trouble making your script do what you want, you may find a solution here.

• The maestro module can only be used for scripts that are running inside Maestro. While
the other modules like structureutil and mm can be used for scripts run with Python
outside Maestro, the maestro module requires code that exists inside Maestro. (The next
section describes a method for creating modules that can be used in a variety of situa-
tions.)

• Atoms and bonds are indexed from 1 (not 0) in functions that manipulate the structure.

12.2 Things That Might be Useful

Here are some things we have found useful:

• Emacs and Idle both provide many useful functions for creating and validating Python
scripts. In Emacs, typing CTRL-C CTRL-C checks the syntax of the current file.

• A script that is executing within Maestro can be interrupted by typing CTRL+C in the ter-
minal window in which Maestro was started.

• Modules are a great way to organize your code. When you create a set of functions you
think are useful in multiple scripts, create a module to hold the scripts and place it in the
module search path (for example .schrodinger/maestroversion/scripts in your
home directory). This makes the functions available for use in all your scripts.

• Even though the maestro module cannot be used outside Maestro, it is possible to write
a module that includes maestro, and can be included as a module in another script or run
as a stand-alone script. Here is an example:

pdbname.py
def assign_pdb_names(ct, res_names = True, atom_names = True):

Body not shown:

if __name__ == '__main__':

#Running as stand-alone script:

 structureutil.for_all_structures(sys.argv[1], assign_pdb_names,
Maestro 7.5 Scripting with Python 59

Chapter 12: Tips and Traps

60
 sys.argv[2], "Maestro", "Maestro", True, True)

else:

Are we running inside Maestro?

try:

from schrodinger import maestro

def pdbname():

 st = maestro.workspace_get()

 assign_pdb_names(st)

 maestro.workspace_set(st)

except

pass

This script can be used as follows:

• From within Maestro: pythonrun pdbname.pdbname

• As a stand-alone script:

$SCHRODINGER/utilities/python pdbname.py infile outfile

• Imported into another module: import pdbname
Maestro 7.5 Scripting with Python

Maestro Scripting with Python
Chapter 13
Chapter 13: Running Scripts Outside Maestro
13.1 Running Your Scripts

Although it is not possible to use any of the methods from the maestro module when running
outside Maestro, it is possible to use the structure and structureutil modules.

Note: It is best to use the version of Python we supply ($SCHRODINGER/utilities/
python) as this ensures that all the necessary environment variables are set up before
your script is run.

The main difference between running a script inside or outside Maestro is how you gain access
to structures. When running a script inside Maestro, you can get structures from the Workspace
or the project. However, in your stand-alone scripts you need to read the structures directly
from the files. Fortunately this is easy. Short filter scripts can be created that read structures
from one file and write modified versions to another file.

13.2 Simple Filters

Reading structures is best done with the StructureReader class. The structure reader knows
how to read from PDB, SD (mdl), or Maestro files. If the format is not specified explicitly, the
file suffix is used to determine the format:

Once you have a structure object, it knows how to write or append itself to a specified file.
Again, the format can be PDB, SD, or Maestro. If the format is not specified explicitly, the file
suffix is used.

.ent

.pdb
PDB

.sd

.sdf
SD

.mae Maestro
Maestro 7.5 Scripting with Python 61

Chapter 13: Running Scripts Outside Maestro

62
Example 1. Read a file and write a new file

Here is an example of a filter that reads a file and writes to a new file all the structures that
contain a chlorine atom:

from schrodinger import structure
import sys
import os

os.remove(sys.argv[2])

for s in structure.StructureReader(sys.argv[1], format='maestro'):
for iatom in s.atom:

if iatom.atomic_number == 17:
 s.append(sys.argv[2], format="maestro")

break

To run this script, enter the following command:

$SCHRODINGER/utilities/python findcl.py infile.mae outfile.mae

Note: In this case, the format is specified explicitly as format=maestro so this only oper-
ates on Maestro files, regardless of the file suffix. Any number of operations could be
performed on the structure before it is written out again.

There is also a mechanism for examining the properties of the structures in the file. For
example, you could examine those quantities that are calculated and added to a file by
programs like Glide, QikProp, or MacroModel. The "property" field of the structure class can
be used as a Python dictionary to get and set properties associated with that structure.

Note: When operating from files, you must use the property name exactly as it appears in the
file. Also if you create a property name, it must conform to the following prefix
convention, based on the type of data you wish to add:

The following example creates a new integer property. When the output file is imported into
Maestro, this new property appears in the Project Table as "My Sum".

s.property['i_user_My_Sum']= sum

Real number r_user_

Integer i_user_

String s_user_

Boolean b_user_
Maestro 7.5 Scripting with Python

Chapter 13: Running Scripts Outside Maestro
Example 2. Properties from a Glide poseviewer file.

The following example shows how to use the properties from a Glide poseviewer file.

Note: No explicit format is given, so the suffix of the input and output file determine the
format. The receptor (first structure) is omitted and the remaining ligand poses are only
written to the input file if the GlideScore is < -4.5.

from schrodinger import structure
import sys
import os

os.remove(sys.argv[2])

cnt = 1
for s in structure.StructureReader(sys.argv[1]):

if cnt != 1:
if s.property['r_i_glide_gscore'] < -4.5 :

 s.append(sys.argv[2])
 cnt += 1
Maestro 7.5 Scripting with Python 63

Chapter 13: Running Scripts Outside Maestro

64
 Maestro 7.5 Scripting with Python

Python Scripting with Python
Chapter 14
Chapter 14: Getting Help
Schrödinger software is distributed with documentation in PDF format. If the documentation is
not installed in $SCHRODINGER/docs on a computer that you have access to, you should
install it or ask your system administrator to install it.

For help installing and setting up licenses for Schrödinger software and installing documenta-
tion, see the Installation Guide. For information on running jobs, see the Job Control Guide.

Maestro has automatic, context-sensitive help (Auto-Help and Balloon Help, or tooltips), and
an online help system. To get help, follow the steps below.

• Check the Auto-Help text box, which is located at the foot of the main window. If help is
available for the task you are performing, it is automatically displayed there. Auto-Help
contains a single line of information. For more detailed information, use the online help.

• If you want information about a GUI element, such as a button or option, there may be
Balloon Help for the item. Pause the cursor over the element. If the Balloon Help does
not appear, check that Show Balloon Help is selected in the Help menu of the main win-
dow. If there is Balloon Help for the element, it appears within a few seconds.

• For information about a panel or the folder that is displayed in a panel, click the Help but-
ton in the panel. The Help panel is opened and a relevant help topic is displayed.

• For other information in the online help, open the Help panel and locate the topic by
searching or by category. You can open the Help panel by choosing Help from the Help
menu on the main menu bar or by pressing CTRL+H.

To view a list of all available Maestro–related help topics, choose Maestro from the Cate-
gories menu of the Categories tab. Double-click a topic title to view the topic.

If you do not find the information you need in the Maestro help system, check the following
sources:

• Maestro User Manual, for detailed information on using Maestro
• Maestro Command Reference Manual, for information on Maestro commands
• Frequently Asked Questions pages, at

https://www.schrodinger.com/Maestro_FAQ.html

The manuals are also available in PDF format from the Schrödinger Support Center. Informa-
tion on additions and corrections to the manuals is available from this web page.
Python 7.5 Scripting with Python 65

https://www.schrodinger.com/Maestro_FAQ.html
https://www.schrodinger.com/SupportCenterMain.php?mID=8&sID=10&cID=0

Chapter 14: Getting Help

66
If you have questions that are not answered from any of the above sources, contact Schrödinger
using the information below.

E-mail: help@schrodinger.com
USPS: 101 SW Main Street, Suite 1300, Portland, OR 97204
Phone: (503) 299-1150
Fax: (503) 299-4532
WWW: http://www.schrodinger.com
FTP: ftp://ftp.schrodinger.com

Generally, e-mail correspondence is best because you can send machine output, if necessary.
When sending e-mail messages, please include the following information, most of which can
be obtained by entering $SCHRODINGER/machid at a command prompt:

• All relevant user input and machine output
• Python purchaser (company, research institution, or individual)
• Primary Python user
• Computer platform type
• Operating system with version number
• Python version number
• Maestro version number
• mmshare version number
Python 7.5 Scripting with Python

mailto:help@schrodinger.com
http://www.schrodinger.com

Maestro Scripting with Python
Appendix A
Appendix A: Reference Modules
The Schrödinger installation of Python includes a schrodinger package, that contains a
number of other packages and modules. The descriptions of these packages and modules are in
HTML format and are located in the following directory:

$SCHRODINGER/docs/general/python/py30_tutorial

Links to these documents are provided in the HTML version of this manual. You can also open
the file schrodinger.html in this directory and navigate to the documentation from there.
The main packages are described in Table A.1.

Table A.1. Description of supplied modules.

Module Description

application Application-specific functions

infra Low-level package with tools not intended for general script usage. We
reserve the right to change these modules as we feel necessary.

job Functions for launching and managing jobs

maestro Functions used for interaction with Maestro

project Functions used with the Project Table, either inside or outside Maestro

structure Functions to read, write, and manipulate structures

structureutil Functions that operate on structure objects: finding rings and matching
SMARTS expressions, etc.

ui Graphical user interface tools. Fixes some bugs in Tkinter and PMW that
cause bad interactions with Maestro. Use these to ensure consistent look and
feel with Maestro. Lastly, provides reusable specialized components.
Maestro 7.5 Scripting with Python 67

Appendix A: Reference Modules

68
 Maestro 7.5 Scripting with Python

Maestro Scripting with Python

Copyright Notices
NCSA HDF5 Software Library and Utilities

Copyright Notice and Statement for NCSA HDF5 (Hierarchical Data Format 5) Software
Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 by the Board of Trustees of the Univer-
sity of Illinois
All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of
Illinois at Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL),
Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup
Gailly and Mark Adler (gzip library).

Redistribution and use in source and binary forms, with or without modification, are permitted
for any purpose (including commercial purposes) provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions, and the following disclaimer in the documentation and/or materials provided with
the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry
prominent notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are
asked, but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to
credit the contributors.

5. Neither the name of the University nor the names of the Contributors may be used to
endorse or promote products derived from this software without specific prior written
permission from the University or the Contributors, as appropriate for the name(s) to be
used.
Maestro 7.5 Scripting with Python 69

Copyright Notices

70
6. THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBU-
TORS “AS IS” WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED. In no event shall the University or the Contributors be liable for any damages
suffered by the users arising out of the use of this software, even if advised of the possi-
bility of such damage.

Portions of HDF5 were developed with support from the University of California, Lawrence
Livermore National Laboratory (UC LLNL). The following statement applies to those portions
of the product and must be retained in any redistribution of source code, binaries, documenta-
tion, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore
National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California
(University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of Cali-
fornia nor any of their employees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-
owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

C and C++ Libraries for Parsing PDB Records

The C and C++ libraries for parsing PDB records are Copyright (C) 1989 The Regents of the
University of California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copy-
right notice and this paragraph are duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such distribution and use acknowledge that
the software was developed by the University of California, San Francisco. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.
Maestro 7.5 Scripting with Python

120 West 45th Street 101 SW Main Street 3655 Nobel Drive Dynamostraße 13

32nd Floor Suite 1300 Suite 430 68165 Mannheim

New York, NY 10036 Portland, OR 97204 San Diego, CA 92122 Germany

SCHRÖDINGER

	Scripting with Python
	Contents
	Document Conventions
	Introduction
	About Python
	2.1 What is Python?
	2.2 Where Can I Find Out More About Python?
	2.3 Some Useful Things to Know About the Python Language
	2.4 Why Python?
	2.5 Isn't It Too Slow?

	Running Python Within Maestro
	3.1 Overview - What Can I Do With Python in Maestro?
	3.2 A First Python Script in Maestro
	3.3 Scripts, Modules, and Functions
	3.4 The pythonrun Command
	3.5 What To Do If It Doesn't Work
	3.6 The pythonimport Command
	3.7 Adding a Parameter
	3.8 Module Search Path
	3.9 The pythoneval Command

	Issuing Maestro Commands
	4.1 The maestro Python Module
	4.2 Sending a Command to Maestro From a Python Script
	4.3 Other Ways to Use maestro.command()

	Manipulating the Workspace
	5.1 The Structure Concept
	5.2 Getting the Workspace Structure
	5.3 Setting the Workspace Structure
	5.4 Operations on Structures
	5.4.1 Obtaining Information on Atoms
	5.4.2 Obtaining Information on Bonds
	5.4.3 Adding and Deleting Bonds
	5.4.4 Measuring and Adjusting
	5.4.5 Deleting Atoms

	5.5 Things You Can Do with the Workspace Structure

	Scripting the Project Table
	6.1 Getting Information About the Project Table
	6.2 Selecting Entries in the Project Table
	6.3 Working on Entries in the Project Table
	6.4 Adding New Columns to the Project Table

	Running Jobs from Scripts
	7.1 The maestro.job_wait Function
	7.2 Running and Managing Jobs Outside Maestro
	7.2.1 Access to the Job Database
	7.2.2 Information on Job Hosts
	7.2.3 Running Jobs From Python

	Writing Your Own Panels
	8.1 Tkinter
	8.2 Important Considerations
	8.3 Supporting Atom Selection from the Workspace
	8.4 Creating Panels with a Maestro Look and Feel

	Registering Python Functions with Maestro
	9.1 Periodic Functions
	9.2 Mouse Hover Functions

	Debugging Your Scripts
	10.1 The Power of print
	10.2 The pdb Module

	The Maestro Scripts Menu
	11.1 The scripts.mnu File
	11.2 Cascading Menus
	11.3 Creating Scripts to be Installed in Maestro

	Tips and Traps
	12.1 Things to Watch Out For
	12.2 Things That Might be Useful

	Running Scripts Outside Maestro
	13.1 Running Your Scripts
	13.2 Simple Filters

	Getting Help
	Reference Modules
	Copyright Notices

